Heat-flux scaling in turbulent Rayleigh-Bénard convection with an imposed longitudinal wind.
نویسندگان
چکیده
We present a numerical study of Rayleigh-Bénard convection disturbed by a longitudinal wind. Our results show that under the action of the wind, the vertical heat flux through the cell initially decreases, due to the mechanism of plume sweeping, and then increases again when turbulent forced convection dominates over the buoyancy. As a result, the Nusselt number is a nonmonotonic function of the shear Reynolds number. We provide simple models that capture with good accuracy all the dynamical regimes observed. We expect that our findings can lead the way to a more fundamental understanding of the complex interplay between mean wind and plume ejection in the Rayleigh-Bénard phenomenology.
منابع مشابه
Scaling of the local convective heat flux in turbulent Rayleigh-Bénard convection.
Local convective heat flux J(r) in turbulent thermal convection is obtained from simultaneous velocity and temperature measurements in a cylindrical cell filled with water. The measured J(r) in the bulk region shows a different scaling behavior with varying Rayleigh numbers compared with that measured in the plume-dominated regions near the sidewall and near the lower conducting plate. The loca...
متن کاملComparison of turbulent thermal convection between conditions of constant temperature and constant flux.
We report the results of high-resolution direct numerical simulations of two-dimensional Rayleigh-Bénard convection for Rayleigh numbers up to Ra=10;{10} in order to study the influence of temperature boundary conditions on turbulent heat transport. Specifically, we considered the extreme cases of fixed heat flux (where the top and bottom boundaries are poor thermal conductors) and fixed temper...
متن کاملScaling laws in turbulent Rayleigh-Bénard convection under different geometry
A systematic study of turbulent Rayleigh-Bénard convection is carried out in two horizontal cylindrical cells of different lengths filled with water. Global heat transport and local temperature and velocity measurements are made over varying Rayleigh numbers Ra. The scaling behavior of the measured Nusselt number Nu(Ra) and the Reynolds number Re(Ra) associated with the large-scale circulation ...
متن کاملLarge Scale Circulation and boundary layer structure in a rough Rayleigh-Bénard cell filled with water
We report Particle Image Velocimetry of the Large Scale Circulation and the viscous boundary layer in turbulent thermal convection. We use two parallelepipedic Rayleigh-Bénard cells with a top smooth plate. The first one has a rough bottom plate and the second one has a smooth one so we compare the rough-smooth and the smooth-smooth configurations. The dimensions of the cell allow to consider a...
متن کاملTailoring boundary geometry to optimize heat transport in turbulent convection
By tailoring the geometry of the upper boundary in turbulent Rayleigh-Bénard convection we manipulate the boundary layer-interior flow interaction, and examine the heat transport using the lattice Boltzmann method. For fixed amplitude and varying boundary wavelength λ, we find that the exponent β in the Nusselt-Rayleigh scaling relation, Nu − 1 ∝ Ra, is maximized at λ ≡ λmax ≈ (2π) , but decays...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2014